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Outline

• The Problem and Project Objectives

• Principal results thus far

• Summary 
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Power Systems Development Facility
Wilsonville, Alabama Demonstration Scale

•Air and oxygen blown 
operation
•Coal Feed Rate ~5000 
lbs/hr
•Bituminous and Sub-
bituminous 
•Pressure (250 psi)

Commercial Scale
•Air and oxygen blown 
operation
•Coal Feed Rate
~250,000 lbs/hr

•Bituminous and Sub-
bituminous 
•Pressure (465 psi)

DOE – NETL; KBR; Southern Co; Siemens – Westinghouse
Electric Power Res. Inst.; Peabody Holding Co.; Southern Res. Inst.

Chris Guenther, NETL
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Characteristics of flows in turbulent 
fluidized beds & fast fluidized beds

• Up to ~ 30 vol% particles, with particle size 
distribution

• Persistent density and velocity fluctuations
– Wide range of spatial scales
– Wide range of frequencies
– Macroscopically inhomogeneous structures, such as radial 

segregation of particles in risers (core-annular flow)
• Particle-particle collisions
• Too many particles to track individually
• Model in terms of local-average variables in locally-

averaged equations of motion (“two-fluid models”)
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Two-fluid model equations:
uniformly sized particles
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Solution of discretized form of the kinetic 
theory based two-fluid model

What I get What I expect based on 
experimental data

30 m tall

76 cm channel 
width

75μm particles

2 cm grid

Gas Gas velvel = 6 = 6 m/sm/s
Solids flux = 220 kg/m2.sSolids flux = 220 kg/m2.s

2-D simulations
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75 75 μμmm particles in airparticles in air

64 x 64 128 x 128 256 x 256 512 x 512

Average 
particle volume 
fraction: 0.05

16x16x16 32x32x32 64x64x64

with MFIX
(Multiphase Flow with 
Interphase eXchanges)2D Domain size : 64 cm x 64 cm

For coarse grid simulations: 

We need new closures 

that will depend on the averaging scale.

3D Domain size : 8 cm x 8 cm x 8 cm
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Multiphase flow computations 
via two-fluid models

Density contour 
showing particle-
rich streamers

Individual 
particles in gas

Reaction engineering need:
Tools to probe macro-scale 
reactive flow features directly

All the constitutive models 
for the two-fluid models are

for nearly homogeneous 
mixtures

Project Objective: Coarse-grained equations
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• Eddies with a wide range of length and time 
scales

• Too expensive to resolve all the eddies through 
Direct Numerical Simulation of the Navier-
Stokes Equations

• Approach: Simulate the large eddies and model 
the smaller eddies – Large Eddy Simulations

• Filtered Navier Stokes equations
• Unresolved eddies – effective transport 

properties: viscosity, diffusivities

Single-phase turbulent Flows
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Project Objectives

Original two-fluid 
model and 

constitutive relations

Filtered two-fluid model

Modified constitutive relations

Develop models that allow us to focus on large-scale 
flow structures, without ignoring the possible 
consequence of the smaller scale structures.

• Construct constitutive models that filter over meso-scale structures 
that occur over length scales of 100 – 1000 particle diameters

• Validate filtered models
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Snapshot of particle volume 
fraction field – kinetic theorykinetic theory
based two-fluid model. 

75 μm particles in air

512 x 512 cells 

The average particle volume 
fraction in the domain = 
0.050.05

Squares of different sizes 
illustrate filters of different 
sizes.

Filter Filter ““datadata”” generated through highly resolved generated through highly resolved 
simulations of twosimulations of two--fluid modelsfluid models

64 cm

domainfiltergrid Δ<<Δ<<Δ
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• Performed highly resolved 2-D and 3-D 
simulations of a kinetic theory based 
microscopic two-fluid model for uniformly 
sized particles, and construct closures for 
filtered drag coefficient, filtered particle 
phase pressure and filtered gas & particle 
phase viscosities.

• Igci et al., AICHE J., 54, 1431 (2008).

Completed tasks



13

Kinetic Theory Based Model

Power spectraPower spectra

Meso-scale structures are statistically isotropic
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Filtered drag coefficient 
decreases as filter size increases 

for both 2-D and 3-D
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64 x 64
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3-D

Example: 75 μm; 1500 kg/m3; domain size = 8 cm

Filtered particle phase pressure 
increases as filter size increases 

for both 2-D and 3-D
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Filtered particle phase viscosity 
increases as filter size increases 

for both 2-D and 3-D
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Filtering removes fine structures!

Kinetic Model 2.056-filtered Model
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Two-fluid model simulations with side walls

Periodic BC in 
both directions 
(a.k.a. “Doubly 
periodic”)

0.10.sφ =

Dimensionless domain size:  65.792 x 65.792 
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Partial-slip side 
walls

Periodic BC in 
the vertical 
direction

Resolution: 256 x 256

As filter size 
increases, the 

boundary 
condition for the 

both phases 
goes towards 

free slip.
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Solution of discretized form of the microscopic 
and the filtered equations of motion

Kinetic theory Filtered equations

30 m tall

76 cm channel 
width

2 cm grid

Gas velocity = 6 Gas velocity = 6 m/sm/s
Solids flux = 220 kg/m2.sSolids flux = 220 kg/m2.s
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Solution of discretized form of the filtered 
equations of motion

Particle volume fraction Vertical velocity
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Summary

• Through highly resolved simulations of any two-fluid 
model, one can extract closures for the corresponding 
filtered two-fluid model. We have demonstrated this for a 
kinetic theory based two-fluid model.

• The drag law and the effective stresses which should be 
used in the filtered equations vary systematically with filter 
size.

• Two-dimensional and three-dimensional analyses yield 
similar statistical information.

• The test problem shows that the “filtered equations”
approach has promise. 
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• Validate the filtered two-fluid model equations 

against experimental data

Project Goals: Year 3
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Variation of filtered drag 
coefficient with filter size 2-D
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Filtered drag 
coefficient 2-D
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